Forward looking statements

• This presentation has been prepared by Aerpio Pharmaceuticals ("we", "us" or the "Company") and includes forward-looking statements. All statements contained in this presentation other than statements of historical facts, including statements regarding our product candidates, their therapeutic potential and development plans, our future results of operations and our financial position, our business strategy and plans and our objectives for future operations, are forward-looking statements. Forward-looking statements speak only as of the date hereof unless it is stated otherwise. Although we believe that the expectations reflected in these forward-looking statements are reasonable, these statements relate to our strategy, our intellectual property position, future operations, future financial position, future revenue, projected costs, prospects, plans, objectives of management and expected market growth, and involve known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to be materially different from any future results, levels of activity, performance or achievements expressed or implied by these forward-looking statements including those contained in our public filings with the Securities and Exchange Commission.

• This presentation also contains estimates and other statistical data made by independent parties and by us. Management bases all estimates and projections as to events that may occur in the future (including projections of revenue, development plans and timing of clinical trial results) upon their best judgment as of the date of this presentation. Whether or not such estimates or projections may be achieved will depend upon the Company achieving its overall business objectives and the availability of funds. The Company does not guarantee that any of these projections will be attained. Actual results will vary from the projections, and such variations may be material. New risks emerge from time to time, and except as required by law, neither we nor any other person makes any representation as to the accuracy or completeness of such data or undertakes any obligation to update such data after the date of this presentation. You should, therefore, not rely on these forward-looking statements as representing our views as of any date subsequent to the date of this presentation.

• This presentation may contain trade names, trademarks or service marks of other companies. The Company does not intend the use or display of other parties’ trade names, trademarks or service marks to imply a relationship with, or endorsement or sponsorship of, these other parties. Solely for convenience, the trade names, trademarks or service marks in this presentation are referred to without the symbols ® and ™, but such references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.
TIME-2 Phase 2a study: Reminder

Primary Analysis
- Patients with DME
- Three Arms (n = 144*)
 - SQ/Systemic + Study Eye
 - bid AKB-9778 + monthly x 3 IVT Sham (n=46)
 - bid AKB-9778 + monthly x 3 IVT Lucentis (n=48)
 - bid Placebo + monthly x 3 IVT Lucentis (n=47)
- Primary Endpoint
 - Change in retinal thickness at month 3
- Secondary Measurements
 - 2-step DRSS change at month 3

Secondary Analysis (Prospective)
- Patients with DRSS 2-6 in study and fellow eye
- Two Arms (n = 128)
 - SQ/Systemic + Fellow Eye
 - bid AKB-9778 + None (n=90)
 - bid SQ Placebo + None (n=38)
- Prospective Measurements
 - 2-step DRSS change at month 3

Percentage of Patients with a ≥ 2-Step Improvement in DRSS from Baseline

- Study Eye
 - AKB-9778 (N=40): 10%
 - RBZ (N=34): 8.8%
 - AKB-9778 + RBZ (N=44): 11.4%

- Fellow Eye
 - Placebo Arm (N=24): 4.2%
 - AKB-9778 Arms (N=70): 11.4%

Retrospective Analysis Shows Renal Benefit of AKB-9778 in Diabetic Patients with Albuminuria

- % Change UACR (Geometric Mean ± 95% CI)
TIME-2b Phase 2b study of AKB-9778 in NPDR fully enrolled

Study Objective: Assess the potential benefits of systemic Tie2 activation to slow progression of diabetic eye disease and possibly other diabetic complications such as nephropathy

15 mg AKB-9778 subcutaneous BID

Placebo subcutaneous QD + 15 mg AKB-9778 subcutaneous QD

Placebo subcutaneous BID

• Phase 2b study in pts with moderate to severe non-proliferative diabetic retinopathy (NPDR) without DME and VA 20/40 or better
• 1° Endpoint: ≥ 2-step improvement in DRSS at 48 weeks
• Key 2° Endpoints: development of DME/PDR, DR progression, renal function
• Enrollment commenced June 2017, enrollment closed February 2018
• 167 patients enrolled
• Data expected early Q2 2019
Tie2 Activation: A New Mechanism of Action to Treat Glaucoma
Significant reduction in IOP with subcutaneous AKB-9778 in a 3-month trial in diabetics with normal IOP

From TIME-2 Safety Database

<table>
<thead>
<tr>
<th></th>
<th>AKB-9778 Monotherapy</th>
<th>AKB-9778 + Lucentis®</th>
<th>Lucentis® monotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SE</td>
<td>FE</td>
<td>SE</td>
</tr>
<tr>
<td>Mean Baseline IOP (mmHG)</td>
<td>15.8</td>
<td>15.4</td>
<td>15.9</td>
</tr>
<tr>
<td>Mean Δ from BL (mmHG)</td>
<td>-1.4</td>
<td>-1.4</td>
<td>-1.0</td>
</tr>
<tr>
<td>t-test Δ BL-Mo 3 (p-value)</td>
<td><0.01</td>
<td><0.01</td>
<td><0.05</td>
</tr>
</tbody>
</table>

BL = baseline; SE = study eye; FE = Fellow eye
Larger IOP changes seen in patients with higher baseline pressure

* p<.01
Loss of Tie2 function leads to increased IOP and glaucoma phenotype in mice and humans

Loss of Tie2 activity in ANGPT-1 KO mice results in congenital glaucoma due to a failure of the development of Schlemm’s canal.

Families with mutations in the Tie2/ANGPT pathway associated with congenital glaucoma.

“Several loci support an important role of Tie2/ANGPT signaling in IOP regulation, and Tie2/ANGPT may thus be a therapeutic target.”
Evidence of the role of the Tie2/angiopoietin pathway in IOP regulation

- Loss of Tie2 activity in ANGPT-1 KO mice results in congenital glaucoma due to a failure of the development of Schlemm’s canal (1)
- In a conditional KO mouse model, IOP is elevated due to reduced outflow through Schlemm’s canal and an OAG-like retinal phenotype develops (2)

- Recent studies in humans have identified families with mutations in the Tie2/ANGPT pathway with congenital glaucoma (3), and SNP variants in this pathway that increase the risk of POAG (4).

1. Thompson et al, J Clin Invest 2014;124:4320-4
Pathology of glaucoma involves dysregulation of normal aqueous outflow via the conventional outflow pathway

Conventional Outflow Pathway
- Comprised of the trabecular meshwork, Schlemm’s canal and collecting vessel network
- Responsible for majority of aqueous humor outflow
- Site of pathological changes in POAG
- Current standard of care drugs increase outflow via the uveoscleral pathway (unconventional outflow tract) or reduce production of aqueous humor but do not target conventional outflow
Tie2 activation plays a key role in maintenance of the inner wall of Schlemm’s Canal

Schematic diagrams depicting how impairment of Angpt-Tie2 signaling disrupts SC integrity, leading to glaucomagenesis.
Tie2 activation via VE-PTP inhibition: a novel conventional outflow targeted approach for glaucoma treatment

Tie-2 is expressed in conventional outflow (CO) tract cells (endothelium-like cells)

Tie-2 activity
- Maintains normal CO cell contractile state
- Enhances CO cell viability
- Maintains normal CO ECM
- Inhibits inflammation and reduces fibrosis

Active Tie-2 = Conventional Outflow Stability
Dose-related IOP decrease observed after topical ocular drop administration of AKB-9778

- Dose dependent decrease in IOP with topical ocular dosing
- Topical ocular dosing yielded larger decreases in IOP than subcutaneous dosing
- Decrease in IOP persisted for 24 hours after the last dose
Conclusions

• Activation of the Tie2 pathway via AKB-9778 reduces IOP in humans and rabbits with normal IOP
• The proposed mechanism of this effect is decreased resistance in the conventional outflow pathway (including Schlemm’s Canal) consistent with non-clinical and human genetic evidence of this pathway’s role in controlling IOP
• A topical ocular formulation is being developed to pursue the treatment of elevated IOP with planned Phase 1 program 1H ‘19