Harnessing Artificial Intelligence for Precision Drug Development in blinding eye disease
This presentation contains certain “forward-looking statements”. All statements other than statements of historical fact, included herein, including, without limitation, statements regarding future plans and objectives of Tracery Ophthamlics Inc (the “Company”), are forward-looking statements that involve various risks, assumptions, estimates and uncertainties. Forward-looking statements are often, but not always, identified by the use of words such as “anticipate”, “believe”, “estimate”, “expect”, and “intend” and statements that an event or result “may”, “will”, “can”, “could”, or “might” occur or be achieved and other similar expressions. These statements reflect the current internal projections, expectations or beliefs of the Company and are based on information currently available to the Company. We cannot assure you that such statements will prove to be accurate, and actual results and future events could differ materially from those anticipated in such statements. All of the forward looking statements contained in this presentation are qualified by these cautionary statements. Furthermore, all such statements are made as of the date this presentation is given and the Company assumes no obligation to update or revise these statements.

Forward-looking statements are subject to a number of risks, estimates, assumptions, and uncertainties that may cause the actual results, performance or achievements of the Company to differ materially from those discussed in the forward-looking statements, and even if such actual results are realized or substantially realized, we cannot assure you that they will have the expected consequences to, or effects on the Company. Some of these estimates, assumptions, risks, and uncertainties, include, but are not limited to: research and development, preclinical and clinical testing, regulatory approvals, market acceptance, reimbursement, manufacturing, reliance on third party suppliers, relationship with partners, competitive business environment, dependence on founder, key management, employees and consultants, facilities, availability and terms of current financing, future financial needs, controlling shareholder, patent protection and enforcement, and performance of the Company. The Company expressly disclaims: (a) any obligation to update or revise any such forward-looking statements; and (b) any and all liability for: (i) the accuracy of forward-looking statements contained in this presentation; (ii) any omissions from this presentation; or (iii) any other written or oral communications transmitted to the recipient of this presentation.
The problem: Drug Development is costly & slow

US$ 2+Bn
10 years+
The problem: Drug Development is costly & slow

US$ 2+Bn
10 years+
imprecise

http://chartpack.phrma.org/
The problem: Drug Development is costly & slow

- US$ 2+Bn
- 10 years +
- imprecise

Can be improved with a Biomarker

- 10 years +
- often linked to clinical trial success

http://chartpack.phrma.org/
The Challenge of Dry AMD:

Disease is complex
- 200+ polymorphisms influenced by lifestyle

Can’t be biopsied
- Rely on Image Based Biomarkers (IBBs)

Current IBBs are simple
- Colour & Fundus Autofluorescence (FAF)

Multiple failed clinical trials

Late clinical trials
Large clinical trials
Imagine:

Precision Drug Development

The right person in the right trial, targeting the right pathway with the right chemistry
Imagine:

Precision Drug Development

The right person in the right trial, targeting the right pathway with the right chemistry

Cure

Interrupt

Predict & Prevent
Advanced Computing for Precision Drug Development

Image Based Biomarkers (IBBs)
- the intersection of Clinical Trial Design & Convolutional Neural Networks & Cloud

*EU & US FDA approval
Artificial Intelligence for diabetic retinopathy screening, 2017*

Large data “OMICs”
- from genome to lifestyle, large data fuel Artificial Intelligence

In silico Drug Design
- the proteome meets medical chemistry & advanced computing
Tracery’s answer: A data-driven 3-part platform harnessing Artificial Intelligence to address blinding eye disease

Image Based Biomarkers

OMICs

Drug Design

... first focusing on Dry Age Related Macular Degeneration
Image Based Biomarkers
We see more disease:

FAF = gold standard
We see more disease:

providing the first functional imaging method
We see entirely new complex phenotypes:
We see entirely new complex phenotypes: ... permitting unprecedented classification of our patients
We see entirely new complex phenotypes:

... permitting unprecedented classification of our patients

addressing heterogeneity
We have prospective data:
We have prospective data: permitting predictive modeling
OMICs & large data handling
Phenotype-OMICs correlations: addressing biology of different cohorts

... correlating phenotypes with genotype, OMICs, & lifestyle
OMICs first: identifying cohorts with shared biology

... enabling pathway-driven molecular targeting
in silico Drug Discovery
We can evaluate Protein-Ligand interactions:

... with proteome-wide *in silico* screening of our pipeline

prioritizing IND candidates & predicting NCEs
for classification – addressing heterogeneity
for **prediction** – allowing prevention & intervention
for Precision Drug Development

Dedicated Convolutional Neural Networks

Dimensionality reduction

Hierarchical feature representations

Predictor

Disease:
- Onset
- Progression
- Complications

Precision Drug Development:
- Response
- No Response
- Adverse events
for Personalized Medicine

Dedicated Convolutional Neural Networks

Dimensionality reduction

Hierarchical feature representations

Predictor

Treatment:
- Response
- No Response
- Adverse events

Personalized Medicine:
- Cure
- Intervention
- Prevention

Tracery Features
FAF Features
OCT Features
Features
Tracery’s achievements:

www.clinicaltrials.gov
NCT02588378
NCT02909517

Awards, Non-Dilutive Funding, Intellectual Property

QuickFire Challenges
1st place: “AI for Drug Development”

Ontario Centres of Excellence

SOSCI P
Southern Ontario Smart Computing Innovation Platform

Morgan Lewis

Norton Rose Fulbright

Next steps:

... iteratively enhance computing technology
... expand through cloud

additional cohorts & increased data
Our Team:

<table>
<thead>
<tr>
<th>Medicine Pharma Science</th>
<th>Business & Strategy Pharma & Biotech</th>
<th>Science HealthTech</th>
<th>AI & Drug Discovery Commercialization</th>
<th>AI & Image Analytics Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelley Boyd MD, FRCSC</td>
<td>Paul Howes MBA, CPA</td>
<td>Ken Howling</td>
<td>Naheed Kurji MBA</td>
<td>AliKhan PhD, Engineering</td>
</tr>
<tr>
<td>Exec VP, BD & Strategy</td>
<td>CFO</td>
<td>Dir Operations</td>
<td>PhD</td>
<td></td>
</tr>
</tbody>
</table>

Tracery Ophthalmics inc
<table>
<thead>
<tr>
<th>Tracery:</th>
<th>A data-driven 3-part platform vertically incorporating AI for Precision Drug Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Proposition:</td>
<td>horizontally integrated through the cloud providing data, information & answers as a service in 2 years rather than 10</td>
</tr>
</tbody>
</table>

Image Based Biomarkers

OMICs

Drug Design